New test - January 16, 2018

1a. [4 marks]

Let
$$f(x) = \sqrt{4x + 5}$$
, for $x \ge -1.25$. (4x+5) '/2

Find $f'(1) = \frac{1}{2} (4x + 5)^{-\frac{1}{2}}$

1b. [2 marks]

Consider another function g. Let R be a point on the graph of g. The g-coordinate of R is 1. The equation of the tangent to the graph at R is y = 3x + 6.

Write down g'(1) = 9

1c. [2 marks]

Find
$$g(1)$$
 $\frac{3}{5}x^2 + 6x$

1. [7 marks]

Let $h(x) = f(x) \times g(x)$. Find the equation of the tangent to the graph of h at the point where x=1 ,

2a. [3 marks]

Let
$$f'(x) = -24x^3 + 9x^2 + 3x + 1$$
 $f''(x) = -72x^2 + 18x + 3 = 3(-24x^2 + 6x + 1)$
 $x = -6 \pm 6^2 - 4(-24)(1) = -6 \pm 736 + 16$
The area we have a find a right of the result of the

There are two points of inflexion on the graph of f. Write down the x-coordinates of these points. = -.114

2b. [2 marks]

Let g(x) = f''(x). Explain why the graph of g has no points of inflexion. g(x) is a quadratic - g'(x) is linear and g''(x) is a quadratic - g'(x) is linear and g''(x) is a

3a. [8 marks] No change in sign => no inflexion points Let $f(x) = \sqrt[3]{x^3 - x^2 - 3x}$. Part of the graph of f is shown below.

$$f'(x) = x^2 - 2x - 3 = 0$$

 $(x - 3)(x + 1) = 0$
 $x = 3, x = -1$

There is a maximum point at A and a minimum point at B(3, -9).

Find the coordinates of A. $(-1) = \frac{1}{3}(1)^3 - 2(1)^2 - 3(-1) = -\frac{1}{3} + 3 = -\frac{2}{3}$

3b. [6 marks]

Write down the coordinates of

- (-3, -9)(i) the image of B after reflection in the y-axis;
- (ii) the image of B after translation by the vector $\begin{pmatrix} -2 \\ 5 \end{pmatrix}$; (), -4)
- (iii) the image of B after reflection in the x-axis followed by a horizontal stretch with scale factor $\frac{1}{2}$. $(3,9) \rightarrow (3,9)$

4a. [2 marks]

A function f is defined for $-4 \leq x \leq 3$. The graph of f is given below.

The graph has a local maximum when x=0 , and local minima when x=-3 , x=2 .

Write down the x-intercepts of the graph of the **derivative** function, f'. -3.0,

4b. [2 marks]

Write down all values of x for which f'(x) is positive. (-3,0) and (2,3)

4c. [2 marks]

At point D on the graph of f, the x-coordinate is -0.5. Explain why f''(x) < 0 at D. f is concave down at $x = -0.5 \implies f''(x) < 0$

5a. [3 marks]

Consider the function f with second derivative f''(x)=3x-1 . The graph of f has a minimum point at

A(2, 4) and a maximum point at $B\left(-\frac{4}{3},\frac{358}{27}\right)$

Use the second derivative to justify that B is a maximum.

$f''(-\frac{1}{3}) = 3(-\frac{1}{3}) - 1 = -4 - 1 = -5 < 0$ $f''(-\frac{1}{3}) < 0 = > f$ is concave up = > B is a maximum

56. [4 marks]

Given that $f'(x) = \frac{3}{2}x^2 - x + p$, show that p = -4. $f(x) = \frac{1}{3} \cdot \frac{3}{2}x^3 - \frac{1}{2}x^2 + \rho x$ $= \frac{1}{4}x^3 - \frac{1}{2}x^2 - 4x + C$ $3 = \frac{3}{2}(x)^2 - (x) = -4$ 6 - 2 = -4

$$\frac{3}{3}x^{2}-x+\rho=0$$

$$\frac{3}{3}(2)^{2}-(3)=-\rho$$

$$6-2=-\rho$$

$$4=-\rho=>\rho=-4$$

€. [7 marks]

Find f(x)

6a. [2 marks]

Consider
$$f(x) = x^2 + \frac{p}{x}$$
, $x \neq 0$, where p is a constant.
$$F(x) = x^2 + \rho x^{-1}$$
$$F'(x) = 2x - \rho x^{-2}$$

6b. [4 marks]
$$2(-2)-p(-2)^{-2}=0$$

$$-\frac{p}{4}=4$$
 There is a minimum value of $f(x)$ when $x=-2$. Find the value of p .

Printed for Pueblo East High School

© International Baccalaureate Organization 2018

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®