EUA5 Practice 2

1a. [2 marks]

Let
$$f(x) = \frac{3x}{x-q}$$
, where $x \neq q$

Write down the equations of the vertical and horizontal asymptotes of the graph of f.

1b. [2 marks]
$$x = 6$$

 $y = \frac{3}{1} = 3$

The vertical and horizontal asymptotes to the graph of f intersect at the point Q(1,3).

1c. [4 marks]

The vertical and horizontal asymptotes to the graph of f intersect at the point Q(1,3). $Q = \sqrt{(x-1)^2 + (\frac{3x}{x-1})^3}$

The point
$$\mathrm{P}(x,\ y)$$
 lies on the graph of f . Show that $\mathrm{PQ} = \sqrt{\left(x-1\right)^2 + \left(rac{3}{x-1}\right)^2}$

$$PQ = \sqrt{(x-1)^2 + (\frac{3x}{x-1})^2}$$

$$= \sqrt{(x-1)^2 + (\frac{3x-3(x-1)}{x-1})^2}$$

$$= \sqrt{(x-1)^2 + (\frac{3x-3x+3}{x-1})^2}$$

$$= \sqrt{(x-1)^2 + (\frac{3x-3x+3}{x-1})^2}$$

2a. [2 marks]

Let
$$f(x) = 3x - 2$$
 and $g(x) = \frac{5}{3x}$, for $x \neq 0$,

Find
$$f^{-1}(x)$$
. $x = 3y - 3$
 $y = \frac{x+2}{3} = f^{-1}(x)$

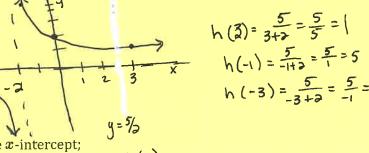
2b. [2 marks]

Show that
$$(g \circ f^{-1})(x) = \frac{5}{x+2}$$
. $g(f^{-1}(x)) = g(\frac{x+2}{3}) = \frac{5}{3(\frac{x+2}{3})} = \frac{5}{x+2}$

2c. [2 marks]

Let $h(x) = rac{5}{x+2}$, for $x \geqslant 0$. The graph of h has a horizontal asymptote at y=0.

by imptote at y = 0.

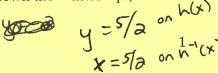

Vertical asymptote at y = 0.

At $x = -\frac{5}{a}$

Find the y-intercept of the graph of h. λ =0

2d. [3 marks]

Hence, sketch the graph of h.


$$h(3) = \frac{5}{3+2} = \frac{5}{5} = (3,1)$$

$$h(-1) = \frac{5}{-1+2} = \frac{5}{1} = 5$$

$$h(-3) = \frac{5}{-3+2} = \frac{5}{-1} = -5$$

2e. [1 mark]

For the graph of h^{-1} , write down the x-intercept;

2f. [1 mark]

For the graph of h^{-1} , write down the equation of the vertical asymptote.

2g. [3 marks]

h -> (3,1)

Given that $h^{-1}(a) = 3$, find the value of a. (1,3) since h(3) = 1, h'(1) = 3 $h'' \rightarrow (1,3)$ a=1

3a. [1 mark]

Let $f(x) = p + \frac{9}{x-q}$, for $x \neq q$. The line x = 3 is a vertical asymptote to the graph of f.

Write down the value of q.

9=3

3b. [4 marks]

The graph of f has a y-intercept at (0, 4)

Find the value of p_{a}

 $4 = p + \frac{9}{0-3}$

4=p+9=3

4=p-3 7=e

3c. [1 mark]

The graph of f has a y-intercept at (0, 4).

Write down the equation of the horizontal asymptote of the graph of f.

4=0