New test - January 10, 2018

1a. [1 mark]

The following diagram shows the graph of f', the derivative of f.

The graph of f' has a local minimum at A, a local maximum at B and passes through (4, -2).

The point P(4, 3) lies on the graph of the function, f.

Write down the gradient of the curve of f at P. Point on f' is (4,-2) ... gradient of f at f a

1b. [3 marks]

4-41=m(x-x1)

Find the equation of the <u>normal</u> to the curve of f at P.

Perpendicular \Rightarrow $m = \frac{1}{2}$ [2 marks]

$$y-3=\frac{1}{2}(x-4)$$

 $y=\frac{1}{2}x-2+3$
 $y=\frac{1}{2}x+1$

1c. [2 marks]

Determine the concavity of the graph of f when 4 < x < 5 and justify your answer.

Since f' is increasing on (4,5), f'' is positive.

[7 marks]

If f''>0, then f is concave φ

2. [7 marks]

Let $f(x) = (x^2 + 3)^7$. Find the term in x^5 in the expansion of the derivative, f'(x). $f'(x) = 7(x^2 + 3)^4(2x) = 14 \times (x^2 + 3$

$$f'(x) = 7(x^{2}+3)^{4}(2x) = 14x(x^{2}+3)^{4}$$

 $14x \cdot (\frac{1}{2})(x^{2})^{3}(3)^{4} = 17010 X^{5}$

3. [6 marks]

Note: In this question, distance is in metres and time is in seconds.

A particle moves along a horizontal line starting at a fixed point A. The velocity v of the particle, at time

 $v(t)=\frac{2t^2-4t}{t^2-2t+2}$, for $0\leqslant t\leqslant 5$. The following diagram shows the graph of v

There are t-intercepts at (0, 0) and (2, 0).

Find the maximum distance of the particle from A during the time $0 < t \le 5$ and justify your answer.

5a. [4 marks]

Fred makes an open metal container in the shape of a cuboid, as shown in the following diagram.

Let A(x) be the outside surface area of the container.

Show that
$$A(x) = \frac{108}{x} + 2x^2$$

5b. [2 marks]

$$\frac{[2 \text{ marks}]}{\text{Find } A'(x)} = \frac{x(0) - 108(1)}{x^2} + 4x = \frac{-108}{x^2} + 4x$$

5c. [5 marks]

Given that the outside surface area is a minimum, find the height of the container.

5d. [5 marks]

Common denom
$$\rightarrow \frac{-108+4\times3}{\times^2} = 0$$
 $= 0.08$

Fred paints the outside of the container. A tin of paint covers a surface area of $10~\mathrm{m^2}$ and costs \$20. Find the total cost of the tins needed to paint the container.

$$A(3) = \frac{109}{3} + 2(3)^{2} = 54 \text{ m}^{2}$$

$$54 \div 10 = 5.4 \text{ cans}$$
use 6 cans x \$20 = 120

6a. [2 marks]

Let y=f(x), for $-0.5 \le {
m x} \le 6.5$. The following diagram shows the graph of f' , the derivative of f .

The graph of f^\prime has a local maximum when x=2 , a local minimum when x=4 , and it crosses the xaxis at the point (5, 0).

Explain why the graph of f has a local minimum when x = 5. at x = 5, f(x) = 0, which means that the gradient of the line tangent to f at f at f is f, which implies a local min or max on f at f at f and f are f and f and f are f are f and f are f and f are f and f are f and f are f are f and f are f and f are f and f are f are f and f are f and f are f are f and f are f and f are f are f and f are f and f are f and f are f and f are f are f and f are f and f are f and f are f and f are f are f and f are f are f are f are f are f and f are **6b.** [2 marks]

Find the set of values of $oldsymbol{x}$ for which the graph of $oldsymbol{f}$ is concave down.

f is concave down on the interval (2,4)

7a. [3 marks]

The velocity $v \text{ ms}^{-1}$ of a particle after t seconds is given by

$$v(t) = (0.3t + 0.1)^t - 4_{\text{for }} 0 \le t \le 5$$

The following diagram shows the graph of v.

use a calculatorero "calc"

you a calculatorero "calc"

to sand then do "calc"

prophisero

Find the value of t when the particle is at rest.

when
$$0 = (0.3t + 0.1)^{t} - 4$$

 $t = 4.2763$ or 4.285 econds

7b. [3 marks]

Find the value of t when the acceleration of the particle is 0. $a(t) = t (0.3t + 0.1)^{t-1}$ 8a. [2 marks]

A function f has its derivative given by $f'(x)=3x^2-2kx-9$, where k is a constant.

Find
$$f''(x) = \bigcup_{x \to 2x}$$

8b. [3 marks]

The graph of f has a point of inflexion when x = 1.

Show that h = 2

Show that k=3.

8c. [2 marks]

Find
$$f'(-2)$$
 $f'(-2) = 3(-2)^2 - 2(3)(-2) - 9$
= 3(4) +12 - 9

8d. [4 marks]

Find the equation of the tangent to the curve of f at (-2, 1), giving your answer in the form at f'(-2), the gradient of the tangent line is 15

8e. [3 marks]

50
$$y-1=15(x+2)$$

 $y=15x+30+1 = 7$ $y=15x+31$

9a. [2 marks]

Given that
$$f'(-1) = 0$$
, explain why the graph of f has a local maximum when $x = -1$.

1. [2 marks]

$$f''(x) < 0 \Rightarrow \log max$$

$$f''(-1) = ((-1) - 2(3))$$

$$= -(-1) = (-1) - 2(3)$$

$$= -(-1) = (-1) < 0 \Rightarrow \log max$$

$$= -(-1) < 0 \Rightarrow$$

9b. [3 marks]

There is a minimum on the graph of f. Find the x-coordinate of this minimum.

9c. [2 marks]

$$\frac{\ln x}{x} = 0.x \implies \ln x = 0$$

$$e^{\ln x} = e^{0} = 7 [x=1]$$

Let $g(x) = \frac{1}{x}$. The following diagram shows parts of the graphs of f' and g.

The graph of f' has an x-intercept at x = p. f'(x) = 0 at x = 1

Write down the value of \mathcal{P} .

9d. [3 marks]

The graph of g intersects the graph of f' when x = q. $x \cdot \frac{1}{X} = \frac{10x}{x} \cdot x$

Find the value of q.

10a. [2 marks]

Consider $f(x) = \ln(x^4 + 1)$

Find the value of $f(0) = \ln(1) = 0 = \sqrt{f(0)} = 0$

10b. [5 marks]

$$f_1(x) = \frac{x_{d+1}}{1} (dx_2) = \frac{x_{d+1}}{dx_2}$$

10c. [5 marks]

Find the set of values of x for which f is increasing.

c. [5 marks] $f''(x) = \frac{4x^3}{2} = 0$ $f''(x) = \frac{4x^2(3-x^4)}{(x^4+1)^2}$ The second derivative is given by

The second derivative is given by

The equation f''(x)=0 has only three solutions, when x=0 , $\pm\sqrt[4]{3}$ $(\pm 1.316\ldots)$,

(i) Find $f''(1) = \frac{4(2)}{4} = 2$

- (ii) Hence, show that there is no point of inflexion on the graph of f at x = 0 for f at f (ii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that f (iii) Hence, show that there is no point of inflexion on the graph of f at f (iii) Hence, show that f (ii **10d.** [3 marks]

Printed for Pueblo East High School

© International Baccalaureate Organization 2018

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

