Perconality	STOOD	SOMEWHERE	history history history	milion
minii'llbethereute	chair	in vaders	8	S AND
NORW	WALKING	STORM	SPOT	(I)
PROM	VIOLETS	∃JAd√∃NId CAKE	DOOR	GET A WORD IN
COUNTRY	3.14159	GROUND	BVKED	BUSINES

3.2 Venn Diagrams

def: a diagram representing data or probabilities using circles, common elements of sets are represented using overlapping circles.

Simple Example

Of 100 students, 15 of them are in AVID

Choose a student at random. The probability that student is in AVID is: $f(A) = \frac{n(A)}{n(U)} = \frac{3}{100} = \frac{3}{30}$

The probability that they are NOT in AVID is: $|-P(A)| = \frac{17}{200}$

The Complement of A

A' (read "A not") is not in A, but is in U. A' is the complement of A

$$n(A) + n(A') = n(U)$$

Thus,
$$P(A) + P(A') = 1$$
 and, $P(A') = 1 - P(A)$

Symbols:

Intersection of Events

100 students = U15 in AVID = \cap (A)

7 are Full Diploma, but not in AVID = \cap ($\bigcap A$)
6 are full diploma, and in AVID = \cap ($\bigcap A$)

at random -P(Both DP and Auid) $-P(A \cap D) = \frac{6}{100}$ -P(not full DP)? P(D') = 1 - P(O) $= 1 - \frac{13}{100} = \frac{87}{100}$

In a group of 35 children, 10 have blonde hair, 14 have brown eyes, and 4 have both blonde hair and brown eyes.
Draw a Venn diagram to represent this situation.
A child is selected at random. Find the probability that the child has blonde hair or brown eyes.

A = Bland B = Brown eyes A B $P(AUB) = P(A) + P(B) - P(A \cap B)$ $= \frac{10}{35} + \frac{14}{35} - \frac{4}{35} = \frac{20}{35}$

HW 3B p.71 #2-4 5 The universal set *U* is defined as the set of positive integers less than or equal to 15. The subsets *A* and *B* are defined as:

 $A = \{\text{integers that are multiples of 3}\}$

 $B = \{\text{integers that are factors of 30}\}\$

a List the elements of

i A

ii B

- b Place the elements of A and B in the appropriate region on a Venn diagram.
- Find the probability that the number is
 - both a multiple of 3 and a factor of 30.
 - ii neither a multiple of 3 nor a factor of 30.