- 4 A letter is chosen at random from the 26-letter English alphabet.
 Find the probability that it is
 - a in the word MATHEMATICS
 - b in the word TRIGONOMETRY
 - c in the word MATHEMATICS and in the word TRIGONOMETRY
 - d in the word MATHEMATICS or in the word TRIGONOMETRY.

7 If X and Y are two events such that
$$P(X) = \frac{1}{4}$$
 and $P(Y) = \frac{1}{8}$ and $P(X \cap Y) = \frac{1}{8}$, find a $P(X \cup Y)$ b $P(X \cup Y)'$.

a)
$$P(XUY) = P(x) + P(Y) - P(XUY)$$

= $\frac{1}{4} + \frac{1}{8} - \frac{1}{8} = \frac{1}{4}$
b($P(XUY)' = |-\frac{1}{4} - \frac{3}{4}$

Mutually Exclusive Events

Def: Two events are considered to be <u>mutually exclusive</u> if the outcomes cannot occur at the same time.

Ex Fred rides his bike to school 3 days drives his car to school 1 day

If A and B are mutually exclusive
then P(ANB)=0 and P(AUB)=P(A)+P(B)

Ex! Two events R and S have probabilities $P(R) = \frac{3}{4} \text{ and } P(S) = \frac{3}{12} \text{ and } P(RUS) = \frac{3}{4}.$ Are S and R mutually exclusive? does P(R) + P(S) = P(RUS). $\frac{3}{4} + \frac{3}{12} = \frac{3}{4}.$ $\frac{4}{12} + \frac{3}{12}$ $\frac{8}{12} + \frac{3}{12} = \frac{3}{4}.$ No

- In an inter-school quiz, schools A, B, an C compete. P(A wins)= = , P(B wins)= 4, P(C wins)= =
 - a) P(A or B wins)? $P(AUB) = P(A) + P(B) P(A \cap B)$ $= \frac{1}{3} + \frac{1}{4} 0 = \frac{7}{13}$

 - b) P (A or B or C wins) P(AUBUC)= 3+4+== 47
 - () P (none of them win) = 1 47 = 13

HW p.76 #1,2,3