4.8 APPLICATIONS OF LOGARITHMIC AND EXPONENTIAL FUNCTIONS

EXPONENTIAL GROWTH AND DECAY

- BACTERIA GROWTH
- ANIMAL POPULATIONS
- COMPOUND INTEREST
 - HEATTRANSFER
 - HALF-LIFE

Ex 1: At 12:00, a single bacteria colonizes a can. The growth of the population can be modeled with the function $P(+) = Q^{+}$

where *t* is time in minutes since 12:00.

a) How many bacteria are in the can at 12:05?

$$P(5) = 2^5 = 32$$
A+ 12:10?

b) The can is completely full at 1:00. At what time was the can 1/2 full of bacteria?

[X] Compound Interest $A(t) = p(1+f_0)^{nt}$ P = Principle r = rate, in decimals n = number of times peryear interest t = # of yearsContinuously Compounded Interest P = ertCompare the investment of \$P At

Compare the investment of \$P At

Compare the investment compounded Quarterly

a) $8^{1/2} 9_{1}$ per year compounded

continuously.